Коэффициент теплопроводности окон ПВХ

Коэффициент сопротивления теплопередачи стеклопакетов

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.

Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.

Таблица сопротивления теплопередаче стеклопакетов

п/п Заполнение светового проема R, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХ Алюминий
1 Двойное остекление в спаренных переплетах 0.4
2 Двойное остекление в раздельных переплетах 0.44
3 Тройное остекление в раздельно-спаренных переплетах 0.56 0.46
4 Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм) 0.31
с И – покрытием (с расстоянием между стекол 6 мм) 0.39
обычного (с расстоянием между стекол 16 мм) 0.38 0.34
с И – покрытием (с расстоянием между стекол 16 мм) 0.56 0.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм) 0.51 0.43
oбычного (с расстоянием между стекол 12 мм) 0.54 0.45
с И – покрытием одно из трёх стекол 0.68 0.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0СВт.

Источник: glazingmag.ru

Теплопроводность пластиковых окон

Уже давно прошли те времена, когда жилище человека было лишено окна. Как известно из истории окон, сначала для связи с внешним миром использовался проем небольшого размера. С развитием технологий и навыков, оконный проем принял стандартные значения размеров – те, что используются в наше время.

Сегодня в проем, не считая небольшого процента деревянных окон образца советской эпохи, принято вставлять окна современного типа: пластиковые, алюминиевые, либо же деревянные со стеклопакетом. Рассмотрим подробнее первый тип – светопропускающие изделия, основу которых составляет материал ПВХ (поливинилхлорид).

От конструкции пластиковых окон, исполнения, а также от качества установки зависит их гармония с интерьером помещения, безопасность нахождения людей в нем, удобство и срок их службы – это известно всем. Однако как выбрать качественное пластиковое окно, каким критериям по теплопроводности оно должно соответствовать? Об этом и пойдет речь в этой статье.

На сегодняшнем российском рынке оконных конструкций представлен широкий спектр моделей. Практически у каждой свои особенности и характеристики. Поэтому немудрено, что рядовому покупателю не так просто разобраться с тем, какое окно лучше. В этом случае, лучше будет руководствоваться индивидуальными требованиями, предъявляемыми к будущей конструкции. При этом одним из главных, является соответствие климатическим условиям, в которых планируется эксплуатация пластикового окна.

Оно и верно – окна, предназначенные для использования в жилищах южного региона, в силу своих теплопроводных качеств, не подойдут к применению в северной части нашей страны. И наоборот.

Так что же такое теплопроводность окна и как ее значение влияет на сохранение тепла в помещении? Начнем с определения.

Значение теплопроводности окна.

Теплопроводностью пластиковых окон называют способность закрытого окна удерживать в помещении определенное количество тепла. Для обозначения данной способности оконной конструкции, принято использовать термин «коэффициент теплопроводности». Чем он меньше – тем больше окна сохраняют тепла.

Что же оказывает влияние на теплопроводность окон из пластика? Главным техническим элементом, напрямую оказывающее влияние на значение теплопроводности является камерность стеклопакета. Дело в том, что существует определенная зависимость: при увеличении количества камер теплопроводность пластикового окна уменьшается, а это, в свою очередь, положительно сказывается на количестве тепла, удерживаемом в помещении оконной конструкцией.

Читайте также:  Как почистить горизонтальные жалюзи в домашних условиях

Таблица.

Чтобы легче ориентироваться в теплопроводности разных моделей окон, воспользуйтесь таблицей, в которой приведены способы остекления и коэффициент теплопроводности различных видов окон. Напоминаем, что чем ниже коэффициент, тем лучше.

Источник: oknoudoma.ru

Сопротивление теплопередаче стеклопакета

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно – и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Формула стеклопакета 1 Приведенное сопротивление теплопередаче, м2×°С/Вт
4М1-12-4М1 0,30
4М1-Аг12-4М1 0,32
4M1-16-И4 0,59
4M1-Ar16-И4 0,66
4M1-10-4M1-10-4M1 0,47
4M1-12-4M1-12-4M1 0,49
4M1-Ar10-4M1-Ar10-4M1 0,49
4M1-Ar12-4M1-Ar12-4M1 0,52
4M1-12-4M1-12-И4 0,68
4M1-16-4M1-16-И4 0,72
4M1-Ar6-4M1-Ar6-И4 0,64
4M1-Ar10-4M1-Ar10-И4 0,71
4M1-Ar12-4M1-Ar12-И4 0,75
4М1-Аr16-4М1-Аr16-И4 0,80
4SPGU-14S-4M1-14S-4M1 Теплопакет ® 2.0 0,82
4SPGU-16S-4M1 Теплопакет ® 2.0 0,57

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном – газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

    Расшифровку обозначений формул стеклопакета можно посмотреть здесь.

Источник: www.stis.ru

Выбор окон, в зависимости от региона проживания

Как же выбрать окно в зависимости от региона Вашего проживания?

Какие параметры должны повлиять на Ваш выбор, какая разница между городами находящихся в одной стране, но в абсолютно разных регионах и климатических зонах?

Давайте разберемся по порядку.

Окно – это конструкция состоящая в основном из оконной рамы (рама и створка может быть из ПВХ, дерева или алюминия «теплого») и стеклопакета. Каждый из этих материалов имеет свои показатели энергоэффективности (теплоизоляции), которые необходимо принимать во внимание, выбирая оконную конструкцию именно для Вашего региона.

Основная задача современных окон – это защита помещения от холода и посторонних звуков со стороны улицы не в ущерб светопрозрачности. Защита от холода достигается путем необходимой и достаточной для данного региона теплоизоляции окна.

Теплоизоляция – одна из основных функций окна, которая обеспечивает комфортные условия внутри помещения.

В России для оценки теплозащитных характеристик конструкций принято сопротивление теплопередаче Ro (м²•°C/Вт), величина, обратная коэффициенту теплопроводности k, который принят в нормах DIN.

Коэффициент теплопроводности k характеризует количество тепла в ваттах (Вт), которое проходит через 1м² конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/м² К. Чем меньше значение k, тем меньше теплопередача через конструкцию, т.е. выше ее изоляционные свойства.

И наоборот (для России) чем больше сопротивление теплопередаче Ro (м²•°C/Вт), тем лучше теплоизоляционные свойства окна. Необходимо это уяснить и использовать при выборе окна.

Какие же факторы влияют на значение сопротивления теплопередаче окна Ro (м²•°C/Вт)?

•габариты окна (чем больше габариты окна, тем больше будут потери тепла и хуже теплоизоляция);

•поперечное сечение рамы и створки (чем толще сечение створки/рамы, тем больше их сопротивление теплопередачи и всего окна в целом);

•материал оконного блока (разные материалы имеют различные Ro (м²•°C/Вт);дерево, ПВХ, алюминий «холодный», алюминия «теплый» с термомостом);

•тип стеклопакета (в т.ч. ширина дистанционной рамки стеклопакета, наличие селективного стекла и специального газа в стеклопакете, количество камер);

•количество и местоположение уплотнителей в системе рама/створка (чем лучше и плотнее прилегают уплотнители, тем меньше возможных продуваний).

От значения показателей Ro зависит и температура поверхности ограждающей конструкции, обращенная внутрь помещения. При большой разнице температур происходит излучение тепла в сторону холодной поверхности.

Плохие теплозащитные свойства окон неизбежно приводят к появлению холодного излучения в зоне окон и возможности появления конденсата на самих окнах или в зоне их примыкания к другим конструкциям. Причем это может происходить не только, в следствии, низкого сопротивления теплопередачи конструкции окна, но также и плохого уплотнения стыков рамы и створки.

Из этого можно сделать вывод: сопротивление теплопередаче Ro м²•°C/Вт окна в первую очередь влияет на его выбор. Сопротивление теплопередаче Ro для окна рассчитывается исходя из климатических параметров региона проживания, и могут сильно разниться:

Название города Продолжительность отопительного периода в градусо-сутках Минимально необходимое приведённое сопротивление теплопередаче оконной рамы, м2 •ºС/Вт
Краснодар 2 682 0,35
Липецк 4 727 0,50
Москва 4 943 0,56
Хабаровск 6 182 0,61
Мурманск 5 985 0,60
Сургут 6 321 0,62
Новосибирск 6 606 0,63
Благовещенск 6 671 0,65
Якутск 10 394 0,78

Оконные компании при изготовлении продукции в первую очередь принимают во внимание регион, в котором будут эксплуатироваться их изделия. Когда специалисты рассчитывают уровень суровости климата в регионе, они по специальной формуле находят числовое значение продолжительности отопительного периода в градусо-сутках. Чем больше числовое значение этого параметра, тем продолжительнее холода.

Оконный профиль (ПВХ, дерево, алюминий «теплый») должен обладать показателями приведённого сопротивления теплопередаче, соответствующими климату.

Оконная рама, конечно же, важна для изготовления качественного окна, но при этом не стоит забывать про стеклопакет. Он занимает около 80% всей площади окна. В зависимости от того, сколько стекол используется в стеклопакете, различают однокамерный (два стекла и одна воздушная камера между ними), двухкамерный (три стекла и две воздушные камеры).

Обычное стекло служит слабой преградой для потерь энергии, полученной от отопительных приборов (через обычное стекло уходит свыше 40% тепла), и оно слабо препятствует поступлению избыточной солнечной энергии в спальню (обычное стекло пропускает свыше 80% солнечного тепла).

Поэтому однокамерный стеклопакет, изготовленный из двух обычных стёкол, – не самый удачный выбор для России, так как при наружной температуре –26ºС и температуре воздуха в комнате +20ºС температура поверхности стекла со стороны помещения будет не выше +5ºС.

Будет казаться, что из окна дует. На самом деле это – конвекционный (теплообменный) сквозняк, результатом которого станет появление влаги (конденсата) на поверхности окна (о чем писалось ранее).

Чтобы сократить расходы на отопление и кондиционирование помещений были разработаны, так называемые, «селективные» стекла: I, K и другие виды стекла. Технология их изготовления предполагает, что на поверхность обычного стекла промышленным способом наносят специальные оптические (светопрозрачные) покрытия, которые не пропускают холод и жару, а также за счёт отражения инфракрасных (тепловых) лучей сохраняют внутреннюю температуру помещения на комфортном уровне. Различие между ними заключается в химическом составе покрытий и в эффективности их действия.

Более эффективным является I-стекло. На его поверхность в качестве покрытия нанесен оксид серебра. Благодаря этому, материал обладает очень хорошим значением приведённого сопротивления теплопередаче (в 2,5 раза большим, чем у обычного стекла) и отражает почти 80 % длинноволновых (инфракрасных) излучений.

Установка I-стекла в качестве внутреннего в стеклопакет заметно повысит его общую энергоэффективность:

Тип оконной рамы
(виды рам даны условно)
Приведённое сопротивление теплоотдачи окна, м²•°C/Вт
С однокамерным стеклопакетом, 24 мм, оба стекла обычные С двухкамерным стеклопакетом, 24–32 мм, все стёкла обычные С однокамерным стеклопакетом, 24 мм, I–стекло и обычное С двухкамерным стеклопакетом, 24-32 мм, K–стекло и обычные
«Стандартная» 0,39 0,51–0,53 0,61 0?79–0,81
«Средняя» 0,4 0,52–0,54 0,63 0,81–0,83
«Широкая» 0,41 0,53–0,55 0,65 0,83–0,87

Из таблицы видно, что однокамерный стеклопакет с I стеклом по энергосбережению почти равняется 2-х камерному стеклопакету с обычным стеклом. При этом вес стеклопакета остаётся таким же. Это снижает нагрузку на фурнитуру. А значит, увеличивает срок её эксплуатации. Но необходимо учитывать, что стеклопакет с I стеклом дороже обычного.

Перед покупкой и установкой светопрозрачной конструкции (окна) для начала определитесь с типом оконного профиля (ПВХ, дерево, алюминий «теплый», «холодный»).

Проконсультируйтесь с производителем, подходит ли этот профиль для Вашего региона по сопротивлению теплопередаче Ro (м²•°C/Вт). Выбор стеклопакета является вторым важным моментом, уточните у производителя, какие стеклопакеты могут быть установлены на выбранную Вами профильную систему.

И не забывайте оценку соотношения цены, качества и общей теплоизоляции выбранного Вами окна.

Источник: www.wikipro.ru

Тепловые характеристики окон

Тепло из помещения уходит через стены (

44%). А 80% тепла, проходящего через окно, «утекает» именно через стеклопакет.

Хорошая теплоизоляция – основное требование, которое предъявляется к современным оконным конструкциям, поскольку именно она обеспечивает комфортные условия внутри помещения. Однако не все окна одинаково хорошо сохраняют тепло.

Тепловые характеристики окон можно достаточно точно рассчитать. В России для оценки теплозащитных характеристик конструкций принят коэффициент сопротивления теплопередаче Ro.

Приведем пример расчета коэффициента Ro для стандартного окна размером 1300х1400 мм.

Доля площади пластиковой системы (профиля) в окне примерно 25-30%, доля площади стеклопакета порядка 70-75%. Таким образом, коэффициент сопротивление теплопередаче Ro окна будет рассчитываться по формуле:

Исходя из значений коэффициента Ro, рассчитанных производителями профильных систем и стекла, получаем значения коэффициентов Ro для окна в целом.

КБЕ Энджин
58 мм
КБЕ Эксперт
70 мм
TROCAL Balance
70 мм
КБЕ
88 мм
Ro 0,62 0,76 0,84 1,07
1 камерный стеклопакет 24 мм 0,32 0,22 + 0,19 = 0,41 0,22 +0,23 = 0,45 0,22 + 0,25 = 0,47 0,22 + 0,32 = 0,54
2 камерный стеклопакет 32 мм 0,47 0,33 +0,19 = 0,52 0,33 +0,23 = 0,56 0,33 + 0,25 = 0,58 0,33 + 0,32 = 0,65
2 камерный стеклопакет 38 мм 0,49 0,34 +0,19 = 0,53 0,34 +0,23 = 0,57 0,34 + 0,25 = 0,59 0,34 + 0,32 = 0,66
2 камерный стеклопакет 42 мм 0,51 0,36 +0,19 = 0,55 0,36 +0,23 = 0,59 0,36 + 0,25 = 0,61 0,36 + 0,32 = 0,68
1 камерный стеклопакет 24 мм +Э 0,59 0,41 +0,19 = 0,60 0,41 + 0,23 = 0,64 0,41 + 0,25 = 0,66 0,41 + 0,32 = 0,73
2 камерный стеклопакет 32 мм + Э 0,64 0,45 + 0,19 = 0,65 0,45 +0,23 = 0,68 0,45 + 0,25 = 0,70 0,45 + 0,32 = 0,77
2 камерный стеклопакет 38 мм + Э 0,68 0,48 +0,19 = 0,67 0,48 + 0,23 = 0,71 0,48 + 0,25 = 0,73 0,48 + 0,32 = 0,80
2 камерный стеклопакет 42 мм + Э 0,71 0,50 +0,19 = 0,69 0,50 +0,23 = 0,73 0,50 + 0,25 = 0,75 0,50 + 0,32 = 0,82
+ Э – стеклопакет с энергосберегающим или мультифункциональным стеклом.

Чем больше показатель Ro, тем меньше теплопередача через конструкцию, а значит, меньшее количество тепла теряется через такое окно. Из таблицы, к примеру, видно, что окно, сделанное из профильной системы КБЕ Энджин с монтажной шириной 58 мм, с однокамерным стеклопакетом имеет коэффициент Ro, равный 0,41. Конструкция такого же размера и той же конфигурации, но выполненная из профиля КБЕ 88 мм, с 2-х камерным энергосберегающим стеклопакетом имеет коэффициент Ro = 0,82. Эти цифры означают, что последнее окно отдает тепла в 2 раза меньше, чем первое.

Требуемые значения величины Ro для каждого региона нашей страны различны и определяются в соответствии с продолжительностью отопительного периода.

Таким образом, толщина и геометрия профильной системы, а также количество камер и наличие специальных энергосберегающих покрытий на стекле напрямую влияют на то, насколько эффективно окно сохраняет тепло в доме.

Для достижения максимальных показателей по энергосбережению завод «ROMAX» рекомендует сочетать в двухкамерном стеклопакете мультифункциональное и энергосберегающее стекло, а также заполнять стеклопакет инертным газом аргоном.

Источник: oknaromax.ru

Изменение нормативов по коэффициентам сопротивления теплопередаче в регионах

Валерий Козионов, технический эксперт Декёнинк РУС, комментирует изменение нормативов в обновленной редакции основополагающего документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий» и новые требования к энергоэффективности светопрозрачных конструкций.

Для чего нужны более теплые стены и более теплые окна, зачем повышать нормативный коэффициент сопротивления теплопередаче конструкции? На первый взгляд – всё очевидно. Тем не менее, давайте разберемся.

Для начала, немного основ строительной физики. Если наружная стена (или ограждающая конструкция в виде окна) в течении продолжительного времени подвержена действию постоянных температур, но со стороны помещения и со стороны улицы температуры различные (стационарное состояние), то благодаря разности температур (градиенту температур) через строительную конструкцию образуется тепловой поток от высшего энергетического уровня к низшему. Тепловая энергия течет от тепла к холоду.

В зависимости от теплотехнических характеристик системы наружной стены, выраженной через коэффициент теплопроводности материала стены l (лямбда), Вт/(м °С) в поперечном сечении стены устанавливается характерное распределение температур.

В более сложных ситуациях (многомерные тепловые потоки) по сравнению с невозмущенной зоной стены (одномерные тепловые потоки) как, например, область присоединения окна к наружной стене, изображение распределения температур может быть представлено только частично. Поэтому предлагается изображение изотерм. Изотерма – это линия, образованная точками с одинаковой температурой. Изотермы рассчитываются и изображаются с помощью программ по методу конечного элемента. На основании расчета изотерм могут быть определены тепловые потоки и распределение температур в поперечном сечении строительной конструкции.

Рис.1 Пример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стене Повышая нормативный коэффициент сопротивления теплопередаче R (м 2 °С/Вт), законодатели предписывают архитекторам, проектировщикам и строителям применять материалы и конструкции с более низкой теплопроводностью, которые с одной стороны сохраняют все более ценную энергию для подогрева помещения зимой или для охлаждения их летом, а с другой – повышают температуру на поверхности ограждающих конструкций со стороны помещения, предотвращая риск образования конденсата и грибка и связанные с ними проблемы.

Немного о конденсате и грибке. Воздух обладает свойством в зависимости от своей температуры максимально насыщаться определенным количеством воды в форме водяного пара (объем насыщения). При этом тёплый воздух может насытиться большим количеством воды, чем холодный.

Относительная влажность воздуха обозначает содержание влаги в воздухе по отношению к объему насыщения (= максимально возможное количество). Например, содержание влаги в количестве 8,65 г/м 3 при 20°С соответствует относительной влажности 50%. Для воздуха помещения с температурой 20°С и относительной влажностью 50% это означает, что в воздухе содержится 50% максимально возможного количества воды (17,3 г/м 3 ) в форме водяного пара.

Конденсат образуется в том случае, если воздух из-за охлаждения более не в состоянии сохранять первоначальное количество воды. Температура, при которой начинается этот процесс, называется температурой точки росы или точкой росы.

Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN 4108-3, таблица А.4) При температуре воздуха 20 °С и относительной влажности 50 % температура точки росы составляет 9,3 °С или округлённо 10 °С (→ 10 °С – изотерма для оценки опасности образования конденсата на поверхности конструкции).

Во избежание конденсата, 10°С – изотерма должна находиться внутри конструкции.

Образование грибка является не только следствием образования конденсата. Исследования показывают, что при условиях благоприятных для роста грибка вследствие капиллярной конденсации грибок может образовываться уже ранее. Благоприятные условия – это относительная влажность воздуха ок. 80% установившаяся в течении длительного времени в приповерхностной зоне с подходящей питательной средой (например, домашняя пыль) для грибка.

Рис. 3 Взаимосвязь температуры точки росы и критической температуры для грибка Как видим из вышесказанного, необходимость повышать теплозащитные свойства ограждающих конструкций — это жизненная необходимость, особенно для стран с таким климатом, как в России.

14.12.2018 Минстрой РФ подписал приказ о введении обновленной редакции основополагающего нормативного документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий». Редакция была разработана Научно-исследовательским институтом строительной физики РААСН совместно с рядом представителей строительной индустрии, научно-исследовательскими институтами и содержит новые требования к энергоэффективности светопрозрачных конструкций, основанные на длительном цикле натурных испытаний.

Требования к сопротивлению теплопередаче светопрозрачных ограждающих конструкций в России устарели по отношению к качеству продукции, представленной на современном рынке остеклений. Окна, выбранные по старым нормам, не могут обеспечить нужный уровень температур внутренней поверхности, не позволяют эффективно сохранять тепло, применять широкие стеклопакеты для повышения шумоизоляции, создать надежный монтажный шов с перекрытием зон холодных изотерм и тепловых мостов.

Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкций Новая редакция учитывает современные материалы, методы остекления и дает возможность экономии энергии за счет новых технологий. Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России.

Рис.5 Изменения по определению базовых R0 тр. (м2°С/Вт) для жилых зданий ГСОП рассчитываются по прежней формуле (5.2) СП 50.13330.2012. Базовые значения требуемого сопротивления теплопередаче при ГСОП в интервалах от 2000 до 12000 (°С×сут/год) следует определять методом линейной интерполяции.

Так, согласно изменённому СП 50.13330 требуемое приведенное сопротивление теплопередаче светопрозрачной конструкции R0 тр. (м 2 ° С/Вт), например, для Краснодара (ГСОП = 2538 сут.) составит 0,53 (ранее 0,34).

Приказ об утверждении изменений подписан Министром строительства и жилищно-коммунального хозяйства Российской Федерации Владимиром Якушевым 14 декабря 2018 г., а обновлённый СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» вступит в силу уже через 6 месяцев со дня публикации на сайте Росстандарта.

Новые требования идут в ногу с трендом энергосбережения, позволяют строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности.

Российские производители оконных профилей и стеклопакетов готовы поставлять комплектующие для окон и дверей по новым нормам.

Новые строительные правила предписывают строителям приобретать более дорогие окна и двери и при этом не увеличить стоимость жилья.

Фолькер Гут, генеральный директор Deceuninck в России

– Современные технологии позволяют изготовить доступные по цене окна из многокамерных ПВХ профилей, с 3-мя контурами уплотнителей, увеличенным до 25 мм заглублением стеклопакета и с двухкамерными стеклопакетами с многофункциональными стеклами. Приведенный коэффициент сопротивления такого окна в районе единицы. Одно из таких решений – инновационный профиль Deceuninck «Фаворит Спэйс», который неоднократно отмечался профессиональным сообществом и экспертами как энергоэффективный. Увеличенная ширина профиля 76 мм, 6 воздушных камер и дополнительный 3-й контур уплотнителя в окне «Фаворит Спэйс» надежно сохраняют тепло и спасают от сквозняков. В дополнение ко всему окна «Фаворит Спэйс» экологичны и надежны: их профиль производится без использования свинца и рассчитан на 60 лет эксплуатации.

Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, Россия Портал ОКНА МЕДИА рекомендует: Руководство строительной компании ЮИТ посетили завод партнера Deceuninck в Екатеринбурге

Источник: www.oknamedia.ru