Теплопроводность оконных стеклопакетов
Сопротивление теплопередаче стеклопакета
Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].
Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)
Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).
В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.
В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно – и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.
Как показатель влияет на выбор стеклопакета?
В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.
Формула стеклопакета 1 | Приведенное сопротивление теплопередаче, м2×°С/Вт |
---|---|
4М1-12-4М1 | 0,30 |
4М1-Аг12-4М1 | 0,32 |
4M1-16-И4 | 0,59 |
4M1-Ar16-И4 | 0,66 |
4M1-10-4M1-10-4M1 | 0,47 |
4M1-12-4M1-12-4M1 | 0,49 |
4M1-Ar10-4M1-Ar10-4M1 | 0,49 |
4M1-Ar12-4M1-Ar12-4M1 | 0,52 |
4M1-12-4M1-12-И4 | 0,68 |
4M1-16-4M1-16-И4 | 0,72 |
4M1-Ar6-4M1-Ar6-И4 | 0,64 |
4M1-Ar10-4M1-Ar10-И4 | 0,71 |
4M1-Ar12-4M1-Ar12-И4 | 0,75 |
4М1-Аr16-4М1-Аr16-И4 | 0,80 |
4SPGU-14S-4M1-14S-4M1 Теплопакет ® 2.0 | 0,82 |
4SPGU-16S-4M1 Теплопакет ® 2.0 | 0,57 |
Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном – газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.
-
Расшифровку обозначений формул стеклопакета можно посмотреть здесь.
Источник: www.stis.ru
Коэффициент сопротивления теплопередачи стеклопакетов
Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:
Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?
Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.
Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.
Расчет коэффициента теплопроводности
К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.
Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.
Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.
Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.
Таблица сопротивления теплопередаче стеклопакетов
п/п | Заполнение светового проема | R, м^(2)·°С/Вт | |
---|---|---|---|
Материал переплета | |||
Дерево или ПВХ | Алюминий | ||
1 | Двойное остекление в спаренных переплетах | 0.4 | – |
2 | Двойное остекление в раздельных переплетах | 0.44 | – |
3 | Тройное остекление в раздельно-спаренных переплетах | 0.56 | 0.46 |
4 | Однокамерный стеклопакет ( два стекла ) : | ||
обычного (с расстоянием между стекол 6 мм) | 0.31 | – | |
с И – покрытием (с расстоянием между стекол 6 мм) | 0.39 | – | |
обычного (с расстоянием между стекол 16 мм) | 0.38 | 0.34 | |
с И – покрытием (с расстоянием между стекол 16 мм) | 0.56 | 0.47 | |
5 | Двухкамерный стеклопакет ( три стекла ): | ||
oбычного (с расстоянием между стекол 8 мм) | 0.51 | 0.43 | |
oбычного (с расстоянием между стекол 12 мм) | 0.54 | 0.45 | |
с И – покрытием одно из трёх стекол | 0.68 | 0.52 |
*Основные ( популярные ) типы стеклопакетов выделены красным цветом.
Технические характеристики стеклопакетов
Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.
Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.
Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.
Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.
В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.
Тенденции, наметившиеся в оконной индустрии
Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:
- К-стекло, характеризующееся твердым покрытием;
- i-стекло, характеризующееся мягким покрытием.
На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0СВт.
Источник: glazingmag.ru
Теплопроводность пластиковых окон
Уже давно прошли те времена, когда жилище человека было лишено окна. Как известно из истории окон, сначала для связи с внешним миром использовался проем небольшого размера. С развитием технологий и навыков, оконный проем принял стандартные значения размеров – те, что используются в наше время.
Сегодня в проем, не считая небольшого процента деревянных окон образца советской эпохи, принято вставлять окна современного типа: пластиковые, алюминиевые, либо же деревянные со стеклопакетом. Рассмотрим подробнее первый тип – светопропускающие изделия, основу которых составляет материал ПВХ (поливинилхлорид).
От конструкции пластиковых окон, исполнения, а также от качества установки зависит их гармония с интерьером помещения, безопасность нахождения людей в нем, удобство и срок их службы – это известно всем. Однако как выбрать качественное пластиковое окно, каким критериям по теплопроводности оно должно соответствовать? Об этом и пойдет речь в этой статье.
На сегодняшнем российском рынке оконных конструкций представлен широкий спектр моделей. Практически у каждой свои особенности и характеристики. Поэтому немудрено, что рядовому покупателю не так просто разобраться с тем, какое окно лучше. В этом случае, лучше будет руководствоваться индивидуальными требованиями, предъявляемыми к будущей конструкции. При этом одним из главных, является соответствие климатическим условиям, в которых планируется эксплуатация пластикового окна.
Оно и верно – окна, предназначенные для использования в жилищах южного региона, в силу своих теплопроводных качеств, не подойдут к применению в северной части нашей страны. И наоборот.
Так что же такое теплопроводность окна и как ее значение влияет на сохранение тепла в помещении? Начнем с определения.
Значение теплопроводности окна.
Теплопроводностью пластиковых окон называют способность закрытого окна удерживать в помещении определенное количество тепла. Для обозначения данной способности оконной конструкции, принято использовать термин «коэффициент теплопроводности». Чем он меньше – тем больше окна сохраняют тепла.
Что же оказывает влияние на теплопроводность окон из пластика? Главным техническим элементом, напрямую оказывающее влияние на значение теплопроводности является камерность стеклопакета. Дело в том, что существует определенная зависимость: при увеличении количества камер теплопроводность пластикового окна уменьшается, а это, в свою очередь, положительно сказывается на количестве тепла, удерживаемом в помещении оконной конструкцией.
Таблица.
Чтобы легче ориентироваться в теплопроводности разных моделей окон, воспользуйтесь таблицей, в которой приведены способы остекления и коэффициент теплопроводности различных видов окон. Напоминаем, что чем ниже коэффициент, тем лучше.
Источник: oknoudoma.ru
Теплопередача стеклопакетов: что это такое и какими коэффициентами с нею бороться
Главный показатель стеклопакета – его способность удерживать тепло в помещении . В отзывах пользователей пластиковых и пр. окон часто можно встретить чисто субъективные характеристики: «Поставили окна ПВХ, сразу стало теплее»; «С пластиковыми стеклопакетами даже зимой жарко» и т.п.
«Как правильно выбрать пластиковое окно и профиль?» – эта статья подскажет вам не только какой профиль будет самым красивым, но и какое окно будет самым тёплым
Почему лопаются стеклопакеты? Не от мороза ли? И что надо предусмотреть во избежание данных ЧП? Ответы на эти вопросы ждут вас на нашем сайте
Как лучше остеклить балкон или лоджию? Чтобы там было тепло и уютно? Советы бывалых домохозяев ищите по ссылке: https://oknanagoda.com/balkony-lodzhii/osteklenie/luchshe-osteklit-balkon.html
А есть ли какие-либо объективные критерии, характеризующие способность стеклопакета противостоять оттоку тепла из помещения? О них мы и расскажем далее в статье на нашем сайте.
Сопротивление теплопередаче стеклопакетов
Для определения теплопередачи той или иной преграды используют формулу:
U = W/(S*T), где
W – мощность проходящего через преграду потока энергии, Вт;
S – площадь преграды, м²;
Изображение, демонстрирующее утечку тепла через окна по сравнению с утечкой через стены
T- разница температур за и перед преградой, при которой происходит отток тепла.
Физический смысл этой формулы прост. Она показывает мощность энергетического потока, покидающего помещение через преграду площадью 1 кв. м при разнице температур за и перед преградой в 1° С. Чем меньше величина U, тем лучше термоизоляционные свойства преграды.
Но эта формула не слишком удобна для пользователей. В особенности, для россиян, привыкших к тому, что «чем больше, тем лучше». Поэтому в оборот была введена величина, названная «сопротивление теплопередаче». Ее обозначают буквой R.
R = 1/U
Статья на нашем сайте «Теплое остекление фасада: мифы и трюки» расскажет вам о том, можно ли в действительности сделать масштабное остекление алюминиевым профилем тёплым
Как поменять холодное остекление балкона на теплое? Читайте в инструкции по адресу: https://oknanagoda.com/balkony-lodzhii/osteklenie/kholodnogo-ostekleniya-teplo.html
О раздвижных пластиковых окнах для балконных ограждений вам расскажет обзорный материал, посвященной теме остекления лоджий и балконов
На примере одного дома – разница между окнами с хорошей и плохой теплоизоляцией
Чем эта величина больше, тем, следовательно, лучше преграда, в частности, стеклопакет, сопротивляется оттоку тепла от помещения.
Часто для обозначения R используется термин коэффициент сопротивления теплопередаче стеклопакета. Это не совсем верно. Обычно, коэффициент – это безразмерная величина, показывающая соотношение двух параметров. Но к данному термину все привыкли и используют его в обиходе даже чаще, чем правильную формулировку: «сопротивление теплопередаче».
А сколько это будет в цифрах?
Окно с однокамерным стеклопакетом
В РФ сопротивление теплопередаче стеклопакета ГОСТ 24866-99 нормирует в следующих пределах (имеются ввиду стеклопакеты общестроительного назначения):
- для однокамерного стеклопакета сопротивление теплопередаче минимально равно 0,32 м² *°С/Вт;
- двухкамерный стеклопакет, сопротивление теплопередаче – минимально 0,44 м²*°С/Вт.
Нетрудно подсчитать, что максимально допустимый коэффициент теплопередачи стеклопакета однокамерного
U1 = 1/0,32 =3,125 Вт/м²*°С;
Максимально допустимая теплопередача двухкамерного стеклопакета
U2 = 1/0,44 = 2, 273 Вт/м²*°С.
Понятно, что производителя интересует не сопротивление теплопередаче стеклопакета самого по себе, а то, как будет сопротивляться оттоку тепла всё окно в совокупности – стеклопакет, рама. Поэтому была введена еще одна величина: приведенное сопротивление теплопередаче стеклопакета. Рассчитывают ее по следующей формуле:
Ro = [(1-B)/Rp + B/Rsp]-1,
Утечка тепла через стеклопакет и через раму
где Ro – приведенное сопротивление теплопередаче стеклопакета;
B – отношение площади остекления к площади всего оконного проёма;
Rp – сопротивление теплопередаче профиля;
Rsp – сопротивление теплопередаче стеклопакета.
Поиграем в классы! Стеклопакетов…
Для того, чтобы потребителю было легче ориентироваться на рынке окон, был введен еще один параметр – класс сопротивления теплопередаче стеклопакета. Он определяется в зависимости от приведенного сопротивления теплопередаче. Всего имеется 10 классов:
Приведенное сопротивление теплопередаче, м 2 * о С/Вт | 0,8 и более | 0,75-0,79 | 0,70-0,74 | 0,65-0,69 | 0,60-0,64 | 0,55-0,59 | 0,50-0,54 | 0,45-0,49 | 0,40-0,44 | 0,35-0,39 |
Класс | А1 | А2 | Б1 | Б2 | В1 | В2 | Г1 | Г2 | Д1 | Д2 |
Чем ниже средние годовые температуры, тем выше коэффициент сопротивления теплопередаче должен быть
Увы, для неспециалиста приведенная выше таблица малоинформативна. Вряд ли по ней рядовой потребитель разберется, какой стеклопакет ему для климатических условий его проживания следует покупать. Поэтому надзорные организации и производители начали придумывать дополнительные таблицы сопротивления теплопередаче стеклопакета в зависимости от тех или иных климатических условий местности.
Например, СНиП II-3-79 (https://www.know-house.ru/info.php?r=win&uid=21) предлагает таблицу, коэффициент сопротивления теплопередачи стеклопакетов в которой поставлен в зависимость от градусо-суток отопительного сезона.
Проще говоря, от того, сколько дней продолжается отопительный сезон и какова при этом средняя разница температур на улице и в отапливаемом помещении, надо и выбирать стеклопакет. Например, при показателе «градусо-суток» в 2000 можно применять стеклопакеты с Ro = 0,3 м²*°С/Вт. А при показателе в 12000 (200 дней при разнице температур в 60° С) – 0,8 м²*°С/Вт.
Подробнее о трехкамерных стеклопакетах читайте здесь: https://oknanagoda.com/steklo/osteklenie-steklo/steklopaketi/trekhkamernyjj-steklopaket.html
О том, как утеплить пластиковое окно к зиме своими руками, узнайте из советов бывалых на нашем сайте
«Ремонт и утепление мансардного окна» – эта заметка поможет вам справиться и с этой задачей!
Так что меряйте температуру в доме и «за бортом», и считайте сутки отопительного сезона! Воздастся стеклопакетами с самым подходящим сопротивлением теплопередаче!
Источник: oknanagoda.com
Теплопроводность оконных стеклопакетов
СТЕКЛОПАКЕТЫ КЛЕЕНЫЕ СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ
ОКС 91.060.50*
ОКСТУ 5913
_______________
* В указателе “Национальные стандарты” 2013 год
ОКС 81.040.20; 91.060.50, 13.200. –
Примечание изготовителя базы данных.
Дата введения 2001-01-01
1 РАЗРАБОТАН ОАО “Институт стекла”, ОАО “ЦНИИПромзданий”, Управлением стандартизации, технического нормирования и сертификации Госстроя России с участием “Glastechniche Industrie Peter Lisec GmbH” и ГУ “Федеральный научно-технический центр сертификации в строительстве”
ВНЕСЕН Госстроем России
2 ПРИНЯТ Межгосударственной научно-технической комиссией по техническому нормированию и сертификации в строительстве (МНТКС) 2 декабря 1999 г.
За принятие проголосовали
Наименование органа государственного управления строительством
Министерство градостроительства Республики Армения
Комитет по делам строительства Министерства энергетики, индустрии и торговли Республики Казахстан
Государственная инспекция по архитектуре и строительству при Правительстве Кыргызской Республики
Министерство развития территорий, строительства и коммунального хозяйства Республики Молдова
Комитет по делам архитектуры и строительства Республики Таджикистан
Государственный комитет строительства, архитектуры и жилищной политики Узбекистана
Государственный комитет строительства, архитектуры и жилищной политики Украины
4 ВВЕДЕН В ДЕЙСТВИЕ с 1 января 2001 г. в качестве государственного стандарта Российской Федерации постановлением Госстроя России от 06.05.2000 г. N 39.
ВНЕСЕНЫ поправки, опубликованные в БСТ N 2, 2002 год, Информационном бюллетене о нормативной, методической и типовой проектной документации N 4-2004 (БСТ N 1, 2004 год, ИУС N 3-2004).
Поправки внесены изготовителем базы данных
1 Область применения
1 Область применения
Настоящий стандарт распространяется на стеклопакеты клееные строительного назначения (далее – стеклопакеты), предназначенные для остекления светопрозрачных конструкций: оконных и дверных блоков, перегородок, зенитных фонарей и др.
Стандарт не распространяется на специальные виды стеклопакетов, применяемых в строительных конструкциях (пулестойкие, огнестойкие, с полимерными пленками в межстекольном пространстве, с криволинейными поверхностями и т.п.).
Требования настоящего стандарта являются обязательными (кроме оговоренных в тексте как рекомендуемые или справочные).
Стандарт может быть использован для целей сертификации.
2 Нормативные ссылки
В настоящем стандарте приведены ссылки на следующие нормативные документы:
ГОСТ 111-2001* Стекло листовое. Технические условия
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 54170-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 166-89 Штангенциркули. Технические условия
ГОСТ 427-75 Линейки измерительные металлические. Технические условия
ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия
ГОСТ 2768-84 Ацетон технический. Технические условия
ГОСТ 3749-77 Угольники поверочные 90°. Технические условия
ГОСТ 3956-76 Силикагель технический. Технические условия
ГОСТ 4295-80 Ящики дощатые для листового стекла. Технические условия
ГОСТ 5244-79 Стружка древесная. Технические условия
ГОСТ 5533-86 Стекло листовое узорчатое. Технические условия
ГОСТ 6507-90 Микрометры. Технические условия
ГОСТ 6709-72 Вода дистиллированная. Технические условия
ГОСТ 7481-78 Стекло армированное листовое. Технические условия
ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия
ГОСТ 9416-83 Уровни строительные. Технические условия
ГОСТ 9805-84 Спирт изопропиловый. Технические условия
ГОСТ 10198-91 Ящики деревянные для грузов массой св. 200 до 20000 кг. Общие технические условия
ГОСТ 12162-77 Двуокись углерода твердая. Технические условия
ГОСТ 14192-96 Маркировка грузов
ГОСТ 15102-75 Контейнер универсальный металлический закрытый номинальной массой брутто 5,0 т. Технические условия
ГОСТ 20435-75 Контейнер универсальный металлический закрытый номинальной массой брутто 3,0 т. Технические условия
ГОСТ 22235-76* Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 22235-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 23166-99 Блоки оконные. Общие технические условия
ГОСТ 24104-88* Весы лабораторные общего назначения и образцовые. Общие технические условия
_______________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 53228-2008, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры
ГОСТ 26302-93 Стекло. Методы определения коэффициентов направленного пропускания и отражения света
ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче
ГОСТ 26602.3-99* Блоки оконные и дверные. Метод определения звукоизоляции
________________
* На территории Российской Федерации документ не действует. Действуют ГОСТ Р ИСО 10140-1-2012, ГОСТ Р ИСО 10140-2-2012, ГОСТ Р ИСО 10140-3-2012, ГОСТ Р ИСО 10140-4-2012, ГОСТ Р ИСО 10140-5-2012, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний
ГОСТ 30698-2000* Стекло закаленное строительное. Технические условия
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 54162-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 30733-2000* Стекло с низкоэмиссионным твердым покрытием. Технические условия
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 54177-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 30799-2001* Стеклопакеты строительного назначения. Метод определения сопротивления атмосферным воздействиям и оценка долговечности
______________
* Вероятно ошибка оригинала. Следует читать: ГОСТ 30779-2001**;
** На территории Российской Федерации документ не действует. Действует ГОСТ Р 54172-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
ГОСТ 30826-2001* Стекло многослойное строительного назначения. Технические условия
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 54171-2010, здесь и далее по тексту. – Примечание изготовителя базы данных.
(Поправка. ИУС N 3-2004).
3 Классификация, основные параметры и размеры
3.1 Стеклопакеты должны изготавливаться в соответствии с требованиями настоящего стандарта по конструкторской и технологической документации, утвержденной в установленном порядке.
3.2 Стеклопакеты представляют собой объемные изделия, состоящие из двух или трех листов стекла, соединенных между собой по контуру с помощью дистанционных рамок и герметиков, образующих герметически замкнутые камеры, заполненные осушенным воздухом или другим газом.
Стеклопакеты в зависимости от числа камер подразделяют на типы:
СПО – однокамерные;
СПД – двухкамерные.
Типы и конструкция стеклопакетов приведены на рисунке 1.
Рисунок 1 – Типы и конструкции стеклопакетов
Рисунок 1 – Типы и конструкции стеклопакетов
Камеры стеклопакетов могут быть заполнены:
– осушенным воздухом;
– инертным газом (аргон – , криптон – и др.);
– шестифтористой серой ( ).
Допускается по согласованию изготовителя с потребителем изготавливать стеклопакеты из четырех плоских листов стекла и более, а также устанавливать декоративные рамки внутри стеклопакетов.
3.3 Стеклопакеты в зависимости от назначения подразделяют на виды:
– стеклопакеты общестроительного назначения;
– стеклопакеты строительного назначения со специальными свойствами:
ударостойкие (Уд);
энергосберегающие (Э);
солнцезащитные (С);
морозостойкие (М);
шумозащитные (Ш).
Требования, предъявляемые к каждому виду стеклопакетов строительного назначения, дополняющие требования настоящего стандарта, должны быть изложены в НД (здесь и далее по тексту – стандартах, технических условиях, технических свидетельствах, договорах на поставку, утвержденных в установленном порядке) на соответствующий вид стеклопакета.
3.4 Виды стекла, применяемые при изготовлении стеклопакетов, указаны в таблице 1.
Таблица 1
Источник: docs.cntd.ru
Изменение нормативов по коэффициентам сопротивления теплопередаче в регионах
Валерий Козионов, технический эксперт Декёнинк РУС, комментирует изменение нормативов в обновленной редакции основополагающего документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий» и новые требования к энергоэффективности светопрозрачных конструкций.
Для чего нужны более теплые стены и более теплые окна, зачем повышать нормативный коэффициент сопротивления теплопередаче конструкции? На первый взгляд – всё очевидно. Тем не менее, давайте разберемся.
Для начала, немного основ строительной физики. Если наружная стена (или ограждающая конструкция в виде окна) в течении продолжительного времени подвержена действию постоянных температур, но со стороны помещения и со стороны улицы температуры различные (стационарное состояние), то благодаря разности температур (градиенту температур) через строительную конструкцию образуется тепловой поток от высшего энергетического уровня к низшему. Тепловая энергия течет от тепла к холоду.
В зависимости от теплотехнических характеристик системы наружной стены, выраженной через коэффициент теплопроводности материала стены l (лямбда), Вт/(м °С) в поперечном сечении стены устанавливается характерное распределение температур.
В более сложных ситуациях (многомерные тепловые потоки) по сравнению с невозмущенной зоной стены (одномерные тепловые потоки) как, например, область присоединения окна к наружной стене, изображение распределения температур может быть представлено только частично. Поэтому предлагается изображение изотерм. Изотерма – это линия, образованная точками с одинаковой температурой. Изотермы рассчитываются и изображаются с помощью программ по методу конечного элемента. На основании расчета изотерм могут быть определены тепловые потоки и распределение температур в поперечном сечении строительной конструкции.
Рис.1 Пример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стене Повышая нормативный коэффициент сопротивления теплопередаче R (м 2 °С/Вт), законодатели предписывают архитекторам, проектировщикам и строителям применять материалы и конструкции с более низкой теплопроводностью, которые с одной стороны сохраняют все более ценную энергию для подогрева помещения зимой или для охлаждения их летом, а с другой – повышают температуру на поверхности ограждающих конструкций со стороны помещения, предотвращая риск образования конденсата и грибка и связанные с ними проблемы.
Немного о конденсате и грибке. Воздух обладает свойством в зависимости от своей температуры максимально насыщаться определенным количеством воды в форме водяного пара (объем насыщения). При этом тёплый воздух может насытиться большим количеством воды, чем холодный.
Относительная влажность воздуха обозначает содержание влаги в воздухе по отношению к объему насыщения (= максимально возможное количество). Например, содержание влаги в количестве 8,65 г/м 3 при 20°С соответствует относительной влажности 50%. Для воздуха помещения с температурой 20°С и относительной влажностью 50% это означает, что в воздухе содержится 50% максимально возможного количества воды (17,3 г/м 3 ) в форме водяного пара.
Конденсат образуется в том случае, если воздух из-за охлаждения более не в состоянии сохранять первоначальное количество воды. Температура, при которой начинается этот процесс, называется температурой точки росы или точкой росы.
Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN 4108-3, таблица А.4) При температуре воздуха 20 °С и относительной влажности 50 % температура точки росы составляет 9,3 °С или округлённо 10 °С (→ 10 °С – изотерма для оценки опасности образования конденсата на поверхности конструкции).
Во избежание конденсата, 10°С – изотерма должна находиться внутри конструкции.
Образование грибка является не только следствием образования конденсата. Исследования показывают, что при условиях благоприятных для роста грибка вследствие капиллярной конденсации грибок может образовываться уже ранее. Благоприятные условия – это относительная влажность воздуха ок. 80% установившаяся в течении длительного времени в приповерхностной зоне с подходящей питательной средой (например, домашняя пыль) для грибка.
Рис. 3 Взаимосвязь температуры точки росы и критической температуры для грибка Как видим из вышесказанного, необходимость повышать теплозащитные свойства ограждающих конструкций — это жизненная необходимость, особенно для стран с таким климатом, как в России.
14.12.2018 Минстрой РФ подписал приказ о введении обновленной редакции основополагающего нормативного документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий». Редакция была разработана Научно-исследовательским институтом строительной физики РААСН совместно с рядом представителей строительной индустрии, научно-исследовательскими институтами и содержит новые требования к энергоэффективности светопрозрачных конструкций, основанные на длительном цикле натурных испытаний.
Требования к сопротивлению теплопередаче светопрозрачных ограждающих конструкций в России устарели по отношению к качеству продукции, представленной на современном рынке остеклений. Окна, выбранные по старым нормам, не могут обеспечить нужный уровень температур внутренней поверхности, не позволяют эффективно сохранять тепло, применять широкие стеклопакеты для повышения шумоизоляции, создать надежный монтажный шов с перекрытием зон холодных изотерм и тепловых мостов.
Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкций Новая редакция учитывает современные материалы, методы остекления и дает возможность экономии энергии за счет новых технологий. Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России.
Рис.5 Изменения по определению базовых R0 тр. (м2°С/Вт) для жилых зданий ГСОП рассчитываются по прежней формуле (5.2) СП 50.13330.2012. Базовые значения требуемого сопротивления теплопередаче при ГСОП в интервалах от 2000 до 12000 (°С×сут/год) следует определять методом линейной интерполяции.
Так, согласно изменённому СП 50.13330 требуемое приведенное сопротивление теплопередаче светопрозрачной конструкции R0 тр. (м 2 ° С/Вт), например, для Краснодара (ГСОП = 2538 сут.) составит 0,53 (ранее 0,34).
Приказ об утверждении изменений подписан Министром строительства и жилищно-коммунального хозяйства Российской Федерации Владимиром Якушевым 14 декабря 2018 г., а обновлённый СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» вступит в силу уже через 6 месяцев со дня публикации на сайте Росстандарта.
Новые требования идут в ногу с трендом энергосбережения, позволяют строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности.
Российские производители оконных профилей и стеклопакетов готовы поставлять комплектующие для окон и дверей по новым нормам.
Новые строительные правила предписывают строителям приобретать более дорогие окна и двери и при этом не увеличить стоимость жилья.
Фолькер Гут, генеральный директор Deceuninck в России
– Современные технологии позволяют изготовить доступные по цене окна из многокамерных ПВХ профилей, с 3-мя контурами уплотнителей, увеличенным до 25 мм заглублением стеклопакета и с двухкамерными стеклопакетами с многофункциональными стеклами. Приведенный коэффициент сопротивления такого окна в районе единицы. Одно из таких решений – инновационный профиль Deceuninck «Фаворит Спэйс», который неоднократно отмечался профессиональным сообществом и экспертами как энергоэффективный. Увеличенная ширина профиля 76 мм, 6 воздушных камер и дополнительный 3-й контур уплотнителя в окне «Фаворит Спэйс» надежно сохраняют тепло и спасают от сквозняков. В дополнение ко всему окна «Фаворит Спэйс» экологичны и надежны: их профиль производится без использования свинца и рассчитан на 60 лет эксплуатации.
Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, Россия Портал ОКНА МЕДИА рекомендует: Руководство строительной компании ЮИТ посетили завод партнера Deceuninck в Екатеринбурге
Источник: www.oknamedia.ru